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LETTER TO THE EDITOR 

Hubbard model for metal-non-metal transitions in 
high-T, superconductors 

R Kishore and E Granato 
Laboratdrio Associado de Sensores e Materiais, Instituto de Pesquisas Espaciais, 12201 
Si0 JosC dos Campos, SP, Brazil 

Received 18 April 1990 

Abstract. It is found that in the paramagnetic phase of the Hubbard model, the electrons 
near the Fermi energy can become localised above a certain value of the ratio between the 
intra-atomic Coulomb interaction and the bandwidth of the non-interacting electrons. This 
localisation of electrons can give rise to a metal-nonmetal transition in a nearly half-filled 
band as found in the paramagnetic phase of the high-T, superconducting oxides. 

Metals and non-metals are customarily differentiated in terms of the Wilson model 
(Wilson 1931) of non-interacting electrons. According to this model, if the valence and 
conduction bands are separated by an energy gap then the system behaves as a non- 
metal for the completely filled valence band with two valence electrons per lattice site. 
If the valence and conduction bands overlap or the number of valence or conduction 
electrons is different from two, it behaves as a metal. However, this model does not 
always work as first pointed out by de Boer and Verwey (1937) since nickel oxide, which 
is non-metal, should be metal according to this model because it has a half-filled valence 
band with one valence electron per lattice site. Mott (1949, 1969) and Hubbard (1963, 
1964) tried to explain this behaviour by introducing the electron correlation into the 
problem. Hubbard showed that due to electron correlation, the valence band splits into 
two subbands separated by an energy gap for a large value of electron correlation. For 
one valence electron per lattice site, the lower band is completely filled and thus the 
system behaves as a non-metal. A transition from a non-metallic to a metallic state 
occurs when the band gap goes to zero as the electron correlation is reduced. This non- 
metallic state due to band splitting is also possible by lattice distortion (Peierls 1955) and 
by antiferromagnetic ordering (Slater 1951). 

Thus it seems that one needs an energy gap in the density of states at the Fermi 
energy in order to have a non-metallic state. However, it is also possible to have an 
energy gap in the density of states at the Fermi energy and still have a metallic state as 
happens in the BCS model (Bardeen et a1 1957) of superconductivity. Also, strong 
disorder (Anderson 1958) can lead to a non-metallic state by producing localised states 
at the Fermi energy instead of creating an energy gap. Wigner (1938) suggested that for 
a low-density of free electrons in a uniform background of positive charges, electron- 
electron interactions can produce non-metallic states by localising the electrons into a 
crystalline lattice. 
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Recently it has been discovered (Sleiglet 1988, Pickett 1989) that in the paramagnetic 
phase the nearly half-filled band systems of high- T, superconducting oxides make a 
transition from a non-metallic to a metallic state as the number of electrons or holes per 
lattice site is changed from unity to some critical value. Since the discovery of these high- 
T, superconductors (Bednorz and Muller 1986) there has been a lot of theoretical interest 
in the nearly half-filled band Hubbard model in order to understand the super- 
conductivity mechanism in these materials (Anderson 1987, Hirsh 1987). The Hubbard 
model was also used to study the antiferromagnetic ordering (Kaxiras and Manousakis 
1988, Krasnitz et aZ1989) of these materials. The aim of this paper is to study the nearly 
half-filled band Hubbard model in order to understand the metal-non-metal transition 
in the paramagnetic phase. 

The Hubbard model is described by the Hamiltonian (Hubbard 1963) 

where UT,, aiuand nio = a~,ai, are respectively the creation and annihilation, and number 
operators of an electron of spin (T at the lattice site i;  qj is the transfer integral and U is 
the intra-atomic Coulomb interaction. 

The quasi-particle spectrum of the Hamiltonian (1) can be obtained from the poles 
of the single-particle Green function 

Gu(k7 0) = I/(@ - & k  - Mu(k ,  0)) (2) 

where M,(k, w )  is the quasi-particle self-energy of the interacting electrons, and the 
band energy of the bare electrons, & k ,  is given by the Fourier transform of the transfer 
integral 

Here, N is the total number of lattice sites. 
Recently, the self-energy M,(k, w )  has been obtained by Kishore (1987) by using a 

semiclassical approximation which gives the exact results for the quasi-particle spectrum 
in both weak- which correspond to U / A  < 1 and U / A  $1, 
respectively. Here A is the bandwidth of non-interacting electrons. However, this 
semiclassical self-energy expression is quite complicated to perform any useful calcu- 
lation. Therefore we try to reduce it to a simple form by making some appropriate 
approximation. For this purpose, we approximate the two-particle correlation functions, 
contained in it, by the product of single-particle correlation functions using Wick's 
theorem (Tyablikov 1967). We obtain a simplified expression 

~ , ( k ,  w )  = un- ,  + - 2 

where 

(4) 
u2 
N 2  k 1 . k ~  

n k , - , ( l  - l t k 2 - a )  + ( I Z k 2 - 0  - n k l - o ) n k + k l - k z o  

- n - u )  -k & k l  - & k 2  - & k + k l - k z  
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Here the angle brackets (. . .) denote the thermal average. Although Wick’s theorem is 
valid only for non-interacting electrons, its application may not change the qualitative 
results because (4) still retains the main features of the original expression. For example, 
it gives the exact results up to second order in U/A in the weak-correlation regime and 
the zero band width result in the strong-correlation regime. Expression (4) can be further 
simplified if we note that the Hubbard model neglects all the inter-atomic Coulomb 
interactions, so it is reasonable to replace the self-energy M,(k, w )  by a local function 
such that 

This type of approximation has been made earlier by Treglia et af (1980). Also, in the 
case of narrow bands if we expand & k l ,  &k2 and & k + k l - k 2  about &k and keep only the first 
order term in V k & k ,  we can replace & k ,  - &k2 - & k + k ,  - k 2  by - &k. Thus the self-energy (4) 
is reduced to 

It is easy to show that (8) gives the self-energy exactly for both zero band width and 
zero inter-atomic interaction. In the weak-correlation regime, it differsfrom the rigorous 
results of Kishore (1987) but reproduces the Hartree-Fock results. In the strong- 
correlation regime it gives the Hubbard first-approximation (Hubbard 1963). For a 
Lorentzian form of the bare electron density of states: 

P O ( & k )  = (2A/7G)[1/4(Ek - T O ) 2  + (9) 

where 

is the average band energy and the evaluation of the k-summation on the right hand side 
of (8) gives the result of the Hubbard third-approximation (Hubbard 1964) 

M , ( o )  = Un-, + U2n-,(l - n-,)/[w - TO - U(l - n-,) + iA/2]. (10) 

This result was obtained earlier by Acquarone et af (1980) by using the Lorentzian 
form (9) for the bare electron density of states in the self-energy of the Hubbard third- 
approximation (1964). Thus for this particular bare electron density of states, the 
approximate self-energy (8) is equivalent to the self-energy of the Hubbard third- 
approximation. Since the self-energy (8) reproduces the known results within appro- 
priate limits, it can be a reasonable starting point for discussing the effects of electron 
correlations. The main advantage of (8) is that it is easy to evaluate numerically. 

The use of the Lorentzian form for the bare electron density of states can be a good 
approximation for disordered systems, where tails exist on both low- and high-energy 
sides of the band. However, for a qualitative understanding of the crystalline narrow 
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band systems with sharp band edges in the bare electron density of states, we consider 
a rectangular form 

1 l A  -AI2 < &k - To < A/2 

otherwise. 
P O ( & k )  = [ 

By using (1 1) in (8), the local single-particle self-energy Mu( u) becomes 

M , ( u )  = ReM,(w) + iIm M , ( u )  (12) 
where 

U2n-,(l - n-,) 
A 

w - To - U(l - n-,) - AI2 
w - To - U(l - n-,) + A/2 

In ReM,(u)  = Un-, - 

and 

-nU2n-,(l - n-,) 
@[AI2 - I W  - To - U(l - n-,)l] 

A 
Im M , ( u )  = 

are the real and the imaginary parts of M,(w). The Heaviside step function @(x)  is equal 
to one for x > 0 and zero for x < 0. 

The density of states of the interacting electrons can be obtained from the imaginary 
part of the Green function. It is given by 

By substituting the single-particle Green function from (2) in (15), and using the rect- 
angular form for the bare electron density of states (11) and the local single-particle self- 
energy M,(w) (12) for M,(k, U ) ,  the density of states p0(w) becomes 

po(u )  = (l/nA)[tan-l[(w - To - ReM,(u)  + A/2)/ / ImMo(u)!]  

- tan-'[(w - To - ReM,(w) - A/2)/1ImM0(w)I] 

X O[A/2 - I W  - To - U(l - n-,)l] + (l/A){l - O[A/2 

- 1 0 -  To - U(l - n-,)I]}@(A/2 - 1 0  - To - ReM,(o) / ) .  (16) 
We calculated the density of states (16) for a paramagnetic system for which po( W )  = 

p-,(o) = p(o ) ,  M,(w) = M-,(w) = M ( w ) ,  and n, = n-, = n/2. The results of the 
numerical calculation are shown in figure 1 where Ap(o) are plotted against U/A for 
three values of UlA and n. The density of states consists of three bands. The lower and 
the upper bands are separated from the middle band by an energy gap which decreases 
with a decrease in the parameter U/A. Finally at some value of U / A  this gap goes to 
zero with the result that all the bands merge into one. The imaginary part of the local 
single-particle self-energy is zero in the lower and the upper bands. In the middle band, 
it has a constant value which depends upon U/A and makes all the electronic states in 
the band damped. The damping of the states increases as U/A increases. On the other 
hand, the number of states in the middle band increases with a decrease in U/A. This 
shows that as U/A increases a dip in the middle of the density of states appears. This dip 
increases as U/A increases. The states in this dip are damped and this suggests the 
possibility of the existence of localised states for the nearly half-filled band. Because of 
the damping of the states, an electron near the Fermi energy has a finite lifetime and 
thereby a finite mean free path which increases with a decrease in U/A. For a sufficiently 
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Figure 1. Density of states A p ( o )  for various values of U / A  and n.  The position of the Fermi 
level is indicated by an arrow. 

large value of U/A the mean free path can be less than the inter-atomic spacing. In this 
case, all the electrons at the Fermi level are localised at their respective lattice sites and 
no conduction occurs. By decreasing U / A ,  the mean free path increases, and at some 
value of U/A when it becomes equal or greater than the inter-atomic spacing the system 
makes a transition from a non-metallic to a metallic state. An approximate value of the 
mean free path at the Fermi energy, AF, can be obtained from the semiclassical relation 

where zF and uF are the lifetime and mean group velocity of electrons at the Fermi 
energy. The lifetime zF can be obtained from the imaginary part of the self-energy by 
using the relation 

where eF is the Fermi energy. But there is no straightforward way to calculate the Fermi 
velocity uF. A rough estimate of uF can be obtained from its semiclassical value for the 
non-interacting electrons. For non-interacting electrons of band width A and rectangular 
density of states (11) centred at To, the Fermi energy E $  can be related to the Fermi 
velocity uF by the relation 

where m* is the effective mass of the electrons. Also since the Fermi momentum kF is 
equal to m*uF, the above relation gives the Fermi velocity as 

AF = Z F U F  (17) 

t F  = -h /2  Im M ( E F )  (18) 

E $  - (TO - A/2) = nA/2 = m*u$/2 (19) 

U F  = nA/kF. (20) 
To calculate kF we consider a two-dimensional electron gas which is consistent with 
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I 2 Figure2. Phase diagramindicatingmetal andnon- 
metal states. n 

our assumption of the constant nature of the rectangular density of states. Also, it is an 
appropriate choice for high-Tc superconductors where the basic electronic properties 
are believed to depend on the nature of the electrons or holes of the copper-oxygen 
layers. In this case 

kF = (2nn)1/2/u (21) 

where U is the inter-atomic distance and it is assumed that the area of the layer is given 
by Nu2. Equations (19), (10) and (21) are written for number of electrons n < 1. For 
n > 1, we can work with holes by replacing n by 2 - n. This replacement preserves the 
electron-hole symmetry of the density of states. 

Now, after calculating rFfrom (14) and (18) and uFfrom (20) and (21), the condition 
jlF > U for the transition from a non-metallic to a metallic state becomes 

(U2/2A2)(2 - n)(2.~n)~’~O[A/2 - / E F  - To - U(1 - n/2)1] < 1 (22) 

where the Fermi energy 
relation 

for the interacting electrons can be calculated from the 

The condition (22) is plotted in figure 2. It shows that for a half-filled band the system 
behaves as a non-metal below a certain value of A / U .  But for a nearly half-filled 
band, the non-metallic state occurs between two lower and upper values of A / U .  This 
behaviour is consistent with the rigorous results (Kishore 1987) of the Hubbard model. 
According to these results, for small band width, the quasi-particle spectrum of the 
Hubbard model consists of two separate bands with exactly one electron per lattice site 
in each band and therefore the system must behave as a non-metal for n = 1 and a metal 
for n # 1 as shown in figure 2. For large values of A / U ,  according to the Hartree-Fock 
results, the system must behave as a metal for all values of n. It should be noted that the 
non-metallic state for a nearly half-filled band occurs because of the localised states 
which appear due to electron correlations. This localisation for a nearly half-filled band 
is relevant for the metal-non-metal transition in high-“, superconducting oxides. 
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To conclude, a local single-particle self-energy, obtainedfrom the projector operator 
formalism of the Green function (Kishore 1987), has been used to obtain the density of 
states of the Hubbard model. It is found that for a nearly half-filled band, the single- 
particle states near the Fermi level are damped. Because of this damping of states, the 
electrons near the Fermi level are localised above a certain value of U / A .  This localisation 
of electrons provides an explanation of the metal-non-metal transition in the para- 
magnetic state of high-T, superconductors. 
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